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Abstract
We study the effect of strong correlations on the zero-bias anomaly (ZBA) in disordered
interacting systems. We focus on the two-dimensional extended Anderson–Hubbard model
(EAHM) on a square lattice. The EAHM has both on-site and nearest-neighbour interactions
and randomly chosen site energies. We use a mean-field theory that incorporates strong
correlations and treats the disorder potential exactly. We use a simplified atomic-limit
approximation for the diagonal inelastic self-energy that becomes exact in the large-disorder
limit, and the off-diagonal self-energy is treated within the Hartree–Fock approximation. The
validity of these approximations is discussed in detail. We find that strong correlations have a
significant effect on the ZBA at half-filling, and enhance the ZBA gap when the interaction is
finite ranged.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The term ‘zero-bias anomaly’ (ZBA) refers either to a peak
in, or a suppression of, the density of states (DOS) at
the Fermi energy. In disordered materials, a ZBA arises
from the interplay between disorder and interactions. Zero-
bias anomalies were originally predicted to occur in strongly
disordered insulators by Efros and Shklovskii [1, 2] (ES) and
later in weakly disordered metals by Altshuler and Aronov [3]
(AA). In the limit of weak interactions and disorder, AA
showed that the exchange self-energy of the screened Coulomb
interaction produces a cusp-like minimum in the DOS at the
Fermi energy. In the limit of strong disorder, ES showed that
the classical Hartree self-energy of the unscreened Coulomb
interaction causes the DOS to vanish at the Fermi energy.
Experiments have shown a smooth evolution between the AA
and ES limits as a function of disorder [4], and it appears that
the essential physics of the ZBA in conventional metals and
insulators is well understood.

In this work, we are interested in anomalies which
have been observed in a number of transition metal oxide
materials, where the physics is less well understood. Transition
metal oxides often exhibit unconventional behaviour because
the physics of their valence band is dominated by strong
short-ranged interactions whose effects cannot generally be
explained by conventional theories of metals and insulators.
Most notably, many transition metal oxides exhibit a Mott
transition when their valence band is half-filled. In disorder-
free systems, the Mott transition [5, 6] occurs between a
gapless metallic state and a gapped insulating state, and is
driven by a strong intraorbital Coulomb interaction.

The Mott transition may occur as a function of any number
of parameters [6], such as temperature [7] or magnetic field [8],
but more commonly occurs in transition metal oxides as a
result of chemical doping. A number of experiments [9–13]
have found that chemical doping introduces sufficient disorder
that there is a regime between the Mott-insulating and gapless
phases that is characterized by a ZBA. This naturally raises the
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question of how the strong electron–electron correlations that
are prevalent in the gapless phase near the Mott transition affect
the physics of the ZBA.

The effect of strong correlations on the ZBA has received
little attention4. In large part, this is due to the difficulty
of incorporating both strong correlations and disorder in a
manageable theory. A number of calculations based on the
unrestricted Hartree–Fock approximation (HFA) have been
used to study the phase diagram of the disordered Hubbard
model [14–18], also known as the Anderson–Hubbard model
(AHM). In these calculations, the disorder potential is treated
exactly for finite-sized systems, but the intraorbital Coulomb
interaction is treated at the mean-field level and therefore
neglects strong correlations. Much of the recent progress has
involved various formulations of dynamical mean-field theory
(DMFT) to include disorder at some level of approximation.
In particular, a number of authors have employed DMFT
coupled with various effective medium approximations for the
disorder potential [19–24]. In these calculations, the local
electron self-energy contains both inelastic contributions from
the interactions and elastic contributions from the disorder-
averaging process. It is well known that these kinds of
disorder-averaging approximations capture many features of
the DOS but do not retain the nonlocal correlations responsible
for the ZBA [3] and cannot, therefore, explain the experiments
cited above. An extension of DMFT, called statistical DMFT,
has been employed to study ensembles consisting of Bethe
lattices with random site energies [25, 26]. This represents
an improvement over the disorder-averaged approximations in
that the results depend nontrivially on the coordination number
of the Bethe lattice. Very recently, the DMFT equations have
been solved by us on a two-dimensional square lattice in a way
which preserves spatial correlations between sites [27]. The
calculations employed a simple atomic-limit approximation for
the self-energy that, while generally appropriate for the large-
disorder limit, does not contain the off-diagonal self-energies
responsible for the DOS anomalies observed in experiments.

In this work, we develop an extension of this method
which includes the effect of the leading-order correction to
the atomic-limit self-energy and we apply this method to both
the AHM and extended Anderson–Hubbard model (EAHM).
Agreement between our results for the AHM and the results
of exact studies [28, 18] supports the method. Our primary
result is in the context of the EAHM, where we find that
strong correlations strongly enhance the ZBA. We argue that
this is because the reduction in screening caused by strong
correlations drives the system toward the strongly localized
limit and ES-like behaviour.

Details of the calculations are given in section 2.1, while
section 2.2 develops two key aspects of the reasoning behind
our approach. First, because it is known to be deficient
in the disorder-free limit, we demonstrate the validity of
the Hubbard-I (HI) approximation for the intraorbital self-
energy in the strongly disordered limit. Second, we show
that the leading-order correction to the atomic-limit self-energy
is nonlocal and has the form of an exchange self-energy.
While this correction cannot be evaluated self-consistently

4 References [28] and [18] are notable exceptions.

at this level of approximation, the form of the correction
suggests that the low-energy physics of the AHM may be
reproduced via a particular mean-field treatment of the EAHM
discussed in section 2.2. In section 2.3, we introduce a
coherent potential approximation (CPA) for the disordered
Hubbard model which is used as a point of comparison for our
calculations. Numerical and analytical results for the case of a
purely local self-energy (sections 3.1 and 3.3) provide context
for our primary results, which include the nonlocal self-energy,
presented in section 3.2.

2. Calculations

2.1. Method

The extended Anderson–Hubbard model is

Ĥ = −t
∑

〈i, j〉,σ
c†

iσ c jσ + V

2

∑

〈i, j〉
n̂i n̂ j +

∑

i

(εi n̂i + Un̂i↑n̂i↓),

(1)
where 〈i, j〉 denotes nearest-neighbour lattice sites i and j ,
n̂iσ = c†

iσ ciσ , n̂i = n̂i↑ + n̂i↓, and parameters t , U and V
are the kinetic energy, the on-site Coulomb interaction, and the
nearest-neighbour interaction respectively. εi is the site energy,
which is box-distributed according to P(εi ) = W−1�(W/2 −
|εi |), where W is the width of the disorder distribution and
�(x) the step function.

We treat the nearest-neighbour interaction at the mean-
field level:

V

2
n̂i n̂ j ≈ V

(
n̂i n j −

∑

σ

c†
iσ c jσ f j i + f 2

i j − ni n j

2

)
(2)

with f j i = 〈c†
j↑ci↑〉 = 〈c†

j↓ci↓〉 in the paramagnetic phase and
n j = 〈n̂ j 〉. Both fi j and n j are determined self-consistently.
The mean-field Hamiltonian, up to an additive constant, is:

Ĥ =
∑

〈i, j〉σ
t ′
i j c

†
iσ c jσ +

∑

i

ε ′
i n̂i + U

∑

i

n̂i↑n̂ j↓ (3)

where t ′
i j = −t − V fi j and ε ′

i = εi + V
∑

j n j , where the sum
is over nearest neighbours of i .

The approximate Hamiltonian (3) is then solved using an
iterative mean-field theory that captures the strong correlation
physics of the intraorbital interaction and treats the disorder
potential exactly for each realization of disorder. The theory
can be formulated in analogy to existing formulations of
DMFT specifically designed for inhomogeneous systems5;
however, our choice of the HI approximation for the self-
energy leads to different low-energy physics than found in
conventional DMFT, and we therefore label our method
‘Hubbard mean-field theory’ (HMFT) to avoid confusion6.

On an N-site lattice, the single-particle Green’s function
can be expressed as an N × N matrix in the site index:

G(ω) = [ωI − t − ε − Σ(ω)]−1 (4)

5 Similar real-space formalisms have been employed by others to describe
heterostructures, notably [29]. A similar formalism has also been applied to
the disordered Bethe lattice in [25, 26] where it was termed ‘statistical DMFT’.
6 Note that the method is closely related to that in [27] where the name
‘statistical DMFT’ was used.
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with I the identity matrix, t the matrix of renormalized hopping
amplitudes t ′

i j , ε the diagonal matrix of renormalized site
energies ε ′

i and Σ(ω) the matrix of local self-energies. The
self-energy �i (ω) corresponds to the inelastic self-energy
�(ω) (the so-called ‘impurity self-energy’) in standard DMFT,
which may be obtained by various self-consistent impurity
solvers [30]. The iteration cycle begins with the calculation
of G(ω) from (4), and niσ and fi j given by,

niσ = − 1

π

∫ εF

−∞
dω Im Gii (ω) (5)

fi j = − 1

π

∫ εF

−∞
dω Im G ji(ω) (6)

from the previous iteration. For each site i , one defines a Weiss
mean field G0

i (ω) = [Gii (ω)−1 + �i (ω)]−1 where Gi j(ω) are
the matrix elements of G(ω). The HI approximation is the
simplest improvement over the HFA that generates both upper
and lower Hubbard bands and, as we discuss in section 2.2,
it works well in the large-disorder limit W 	 t . In this
approximation, Gi (ω) = [G0

i (ω)−1 − �HI
i (ω)]−1 where

�HI
i (ω) = U

ni

2
+ U 2 ni

2 (1 − ni
2 )

ω − ε ′
i − U(1 − ni

2 )
, (7)

and ni is self-consistently determined for each site.
We remark that we can also express the Green’s function

as
G(ω) = [ωI − t0 − ε0 − Σ(ω)]−1 (8)

where t0 and ε0 are matrices of the unrenormalized hopping
amplitudes and site energies. In this case, the self-energy is:

�ii = U
ni

2
+ V

∑

j

n j + U 2 ni
2 (1 − ni

2 )

ω − εi − U(1 − ni
2 ) − V

∑
j n j

(9a)
and

�i j = −V fi j . (9b)

This form emphasizes the nonlocal nature of the self-energy.
In (9a) and (9b), −V fi j is the exchange self-energy, and
V

∑
j n j is the Hartree contribution to the self-energy.

We finish this section with a remark on the different
assumptions implicit in HMFT and conventional (single-
site) DMFT. In DMFT, the self-energy is purely local
and is based on a mapping of the Hubbard model onto
an ensemble of Anderson-impurity Hamiltonians. DMFT
therefore assumes that the most important low-energy inelastic
scattering processes involve Kondo scattering of bath electrons.
This assumption is exact in infinite dimensions, but there are
indications that it fails in two dimensions: recent cluster DMFT
calculations find that the Kondo resonance is absent in two
dimensions when the cluster size is larger than 1 [31], and
exact finite-size numerical studies in the limit of large disorder
do not see evidence of Kondo physics [28, 32]. HMFT, by
contrast, assumes that intersite coupling is small enough (in
this case due to disorder) that Kondo physics is not relevant,
but that the atomic limit is a useful starting point. This
perspective is motivated by the following observation: the local

noninteracting Green’s function for any lattice can always be
written [30]

Gii (ω) = 1

ω − εi − 	i (ω)

where 	i (ω) is the hybridization function that describes the
coupling between the i th lattice site and the rest of the lattice.
It follows directly from perturbation theory in the disordered
limit that 	i (ω) ∼ Zct2/W � t , where Zc is the coordination
number. Gii(ω) is therefore weakly perturbed from the atomic
limit when W is large and Zc is small. In section 2.2, we show
that, when Zct/W is small, the leading-order correction to the
atomic-limit self-energy is nonlocal. The different assumptions
of HMFT and DMFT thus lead to different physics: in HMFT,
the nonlocal self-energy correction produces a reduction of the
DOS at εF while, in DMFT, the Kondo scattering generates a
peak in the DOS at εF.

2.2. Validity of the self-energy

The goal of this section is to examine critically our treatment
of the Hubbard-U interaction in section 2.1. We begin by
showing that the HI treatment of U is valid in the limit of
large disorder and low coordination number, resulting in a
purely local self-energy. We then show that the leading-order
correction to �(ω) arising from U is nonlocal and has the form
of an exchange self-energy. We argue that it is thus possible to
develop a qualitative understanding of the (V = 0) Anderson–
Hubbard model using a modified version of the self-energy
where (i) the Hartree contributions are dropped from (9a) and
(ii) V → Veff ∼ 2t in (9b).

Our discussion is based on a two-site Anderson–Hubbard
Hamiltonian, i.e. on (3) with two sites labelled ‘1’ and ‘2’.
This Hamiltonian can, of course, be diagonalized exactly with
relatively little effort. Here, we are interested in developing
an approximate treatment that is valid in the large-disorder
limit, and which can be applied to the N-site problem.
Comparison to the exact solution is used as a benchmark for
the approximation.

We use an equation-of-motion method to arrive an ap-
proximate expression for the single-particle Green’s function.
Defining a Liouvillian superoperator L such that [33]

L Â ≡ [Ĥ , Â], (10)

where Â is an arbitrary operator, we can formally write the time
evolution of Â as Â(t) = exp(iLt) Â(0). It follows directly that
the retarded Green’s function can be written

Giσ, jσ (ω) =
(

c†
iσ

∣∣∣∣
1

ω − Lc†
jσ

)
(11)

where the inner product of two operators is defined as ( Â|B̂) =
〈{ Â†, B̂}〉 and {, } refers to the anticommutator. The operator
set c†

iσ is not closed under operations by L, but a complete
operator set can be generated with repeated operation by L on
c†

iσ . For example,

Lc†
iσ = ε ′

i c
†
iσ +

∑

j

c†
jσ t ′

j i + U(b†
iσ − c†

iσ ni σ̄ ) (12)

3
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Figure 1. Comparison of the approximate and exact densities of
states for a two-site system. The site energies are ε1 = W/2,
ε2 = −W/2 for W = 8t . Figure panels are for (a) U = 4t ,
(b) U = 8t and (c) U = 12t . Exact calculations are based on exact
diagonalization of the two-site Hubbard model. Approximate
densities of states are given by ρ(ω) = − Im

∑
i Gii (ω)/π , with

G(ω) the matrix (19). Two different approximations are made for the
self-energies: the first has the self-energy given by (20a) and (20b)
and makes the COM1 approximation for p [36]; the second has the
self-energy given by (9a) and (9b) with different choices for V . Both
the COM1 and exact solutions are offset for clarity. The COM1
solution is essentially indistinguishable from the exact solution in all
cases. Note that εF is the zero of energy in this and all other figures.

where b†
iσ = c†

iσ (n̂i σ̄ − ni σ̄ ) and σ̄ = −σ . The operator
b†

iσ is a composite operator, and further composite operators
can be generated from L2c†

iσ , etc. The higher-order composite
operators involve excitations on multiple lattice sites, and are
therefore expected to be less important in the disordered case
than in the clean limit. Here, we truncate the series after a
single application of L so that our operator basis consists of
two operators, c†

iσ and b†
iσ , for each site and spin. This leads

to a ‘two-pole’ approximation for the Green’s function. This
approach has been studied at length in the clean limit and has
been shown to provide a reasonable qualitative description of
the Hubbard model [34–36]. As shown in figure 1, the two-pole
approximation (described in more detail below) is essentially
indistinguishable from the exact solution for the DOS of the
two-site system.

It is useful to define a generalized Green’s function in the
expanded operator space:

Giσ, jσ (ω) =
[

(c†
iσ | 1

ω−Lc†
jσ ) (c†

iσ | 1
ω−Lb†

jσ )

(b†
iσ | 1

ω−Lc†
jσ ) (b†

iσ | 1
ω−Lb†

jσ )

]
(13)

such that Giσ, jσ (ω) is given by the upper left quadrant of
Giσ, jσ (ω). Defining the Liouvillian matrix,

Liσ, jσ (ω) =
[

(c†
iσ |Lc†

jσ ) (c†
iσ |Lb†

jσ )

(b†
iσ |Lc†

jσ ) (b†
iσ |Lb†

jσ )

]
, (14)

and the matrix of overlap integrals,

χiσ, jσ =
[

(c†
iσ |c†

jσ ) (c†
iσ |b†

jσ )

(b†
iσ |c†

jσ ) (b†
iσ |b†

jσ )

]
, (15)

we get

Giσ, jσ (ω) = √
χiσ,iσ [ω − L̃]−1

iσ, jσ
√

χ jσ, jσ (16)

with

χiσ, jσ = δi, j

[
1 0
0 ni σ̄ (1 − ni σ̄ )

]
(17)

and L̃ = √
χ−1 L

√
χ−1.

For the nonmagnetic case, up and down spins are
equivalent, and only the former need be considered. For the
two-site system, and taking the basis [c†

1↑, c†
2↑, b†

1↑, b†
2↑], we

write the Liouvillian matrix explicitly as

L̃ =

⎡

⎢⎢⎣

ε ′
1 + Un1↓ −t ′ Ũ1 0

−t ′ ε ′
2 + Un2↓ 0 Ũ2

Ũ1 0 ε̃1 −t ′ p̃
0 Ũ2 −t ′ p̃ ε̃2

⎤

⎥⎥⎦ , (18)

where

Ũi = U
√

ni↓(1 − ni↓) ε̃i = ε ′
i + U(1 − ni↓) − t ′̃i

̃i = i [ni↓(1 − ni↓)]−1

i = 〈(n̂i↑ − ni↓)c†
j↓ci↓〉 − 〈(1 − n̂i↑ − ni↓)c†

i↓c j↓〉

p̃ = p[n1↓(1 − n1↓)n2↓(1 − n2↓)]−1/2

p = 〈n̂1↓n̂2↓〉 − n1↓n2↓ − 〈c†
1↑c2↑(c†

2↓c1↓ + c†
1↓c2↓)〉.

In the expression for i , j is the nearest neighbour to i
(i.e. j = 1 if i = 2 and j = 2 if i = 1).

Equation (18) allows us to solve for the Green’s function,
provided the fields i , p, and ni↓ are known. In practice, i

and ni↓ can be solved self-consistently, but further information
is needed to calculate p.

The Green’s function G(ω) is given by the upper left 2×2
quadrant of G(ω). It is straightforward to solve (16) to show
that

G(ω) =
[

ω − ε ′
1 − �11(ω) t ′ − �12(ω)

t ′ − �21(ω) ω − ε ′
2 − �22(ω)

]−1

(19)

with

�ii = Uni↓ + Ũ 2
i (ω − ε̃ j )

(ω − ε̃1)(ω − ε̃2) − t ′2 p̃2
(20a)

�12 = �12 = −t ′U 2 p

(ω − ε̃1)(ω − ε̃2) − t ′2 p̃2
(20b)

where j is again the nearest neighbour to i . Equations (20a)
and (20b) are the basic expressions for the self-energy. These
expressions are shown in figure 1 to give very accurate results
for the Green’s function provided that p is correctly chosen. In
this work, we have used the COM1 approximation of Avella
and Mancini [36]. The COM1 approximation works well for
the simple inhomogeneous systems we have tested it on, but is
extremely difficult to apply to disordered systems where p is
different along every bond in the lattice.

4
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Some simplifications can be made in the case of large
disorder. To begin with, we discuss the diagonal self-energies
�ii , and take i = 1. We note that p̃ ∼ O(1), so that

�11 → Un1↓ + U 2n1↓(1 − n1↓)
ω − ε ′

1 − U(1 − n1↓) + t ′̃1

, (21)

whenever (ω − ε̃1)(ω − ε̃2) 	 t2. Apart from the shift t ′̃1,
this is just the Hubbard-I approximation for the self-energy.
As we show next, (21) is justified for ω ≈ εF in the large-
disorder limit, which corresponds in the two-site problem to
|ε1 − ε2| 	 t .

We are interested in the validity of (21) near εF and take
the particular case εF = U/2 (which corresponds to half-
filling) where strong correlations are most important. When
t = 0, each atomic Green’s function has poles at ε ′

i and ε ′
i +U ,

so that spectral weight at εF comes from sites with ε ′
i = ±U/2.

This remains approximately true when t �= 0 provided that
W 	 t . Then, if site 1 contributes spectral weight at the Fermi
level,

εF − ε̃1 ∼ U,

and (21) follows from (20a) provided |εF − ε̃2| > t2/U . This
condition will only not be met when ε ′

2 ≈ −U/2. In other
words, the two cases not well described by (21) are (i) ε ′

1 ≈ ε ′
2

and (ii) ε ′
1 ≈ ε ′

2 + U .
Certainly, in any randomly distributed set of site energies,

both cases are expected to occur for some fraction of sites on
the lattice. However, if the disorder potential is large, and the
coordination number of the lattice is low, then the probability
of any given site having a nearest neighbour satisfying either
condition (i) or (ii) is low, and the fraction of sites not
described by (21) is small. It is interesting to note that the
physical processes neglected here are (i) formation of singlet
correlations between nearly degenerate sites and (ii) resonant
exchange between sites in which the double occupancy of site
1 is nearly degenerate with singlet formation between sites 1
and 2.

Two further comments are warranted regarding our
treatment of �11. First, the simplifications made above assume
that both U and W are large. This case is directly relevant to
the current work since it is the regime in which density of states
anomalies are observed. However, we have found empirically
through numerical studies of small clusters that (21) is also a
good approximation when U is small. This point is illustrated
in figure 1(a). Second, the term t ′1 in (21) is neglected
in (9a). In the clean limit, || � 0.2 and depends only weakly
on U [36]. This term is small relative to the Hartree shift
V

∑
j n j and is therefore neglected.

We emphasize that the Hartree shift does not arise in our
perturbative treatment of the Hubbard-U interaction. It must
therefore be understood to come directly from the nonlocal
Coulomb interaction. This point is important because, as is
shown in section 3, the Hartree term makes a large contribution
to the ZBA at half-filling.

The off-diagonal self-energy, (20b), is significantly harder
to evaluate than the diagonal term. It requires knowledge of
a quantity p that cannot be calculated self-consistently within

the two-pole approximation, although various approximations
exist [36]. However, we note from the definition of p that
�12 measures exchange correlations between sites 1 and 2 and
plays a similar role to the exchange self-energy −V f12 defined
in section 2.1. The form of (20b) therefore suggests that the
off-diagonal self-energy can be represented qualitatively by a
mean-field exchange self-energy due to an effective nonlocal
interaction Veff. We make a rough estimate of Veff as follows:
consider the case where site 1 contributes spectral weight
slightly below εF. There are two possible ranges of site
energies for which this occurs: ε1 less than but approximately
equal to εF, and ε1 less than but approximately equal to εF −U .
In the first case, n1 ≈ 1 and the exchange self-energy is largest
for sites 2 which have n2 ≈ 0, or ε2 � εF [37]. At half-filling
(εF = U/2), (20b) simplifies to �12(εF) ≈ −2t p (where we
have used the fact that p̃ ≈ 0) and

Veff ∼ 2t . (U, W 	 t). (22)

A similar expression is found when ε1 ≈ εF−U . Equation (22)
is remarkable because it depends on neither U nor W .

Figure 1 shows the DOS of a two-site system calculated
within the approximation given by (9a) and (9b). The main
effect of V is to produce a level repulsion between states above
and below the Fermi energy, as illustrated in figure 1(b). The
magnitude of the level repulsion decreases with increasing U ,
and is unobservably small for U = 12t and V < 3t . As the
figure shows, the DOS is well reproduced with V = 0 when
U � W and U 	 W , but is much less well reproduced when
U ≈ W . As expected from the analysis above, this can be
corrected to some extent by a judicious choice of V .

Finally, we note that the nonlocal self-energy plays
a crucial role in the clean low-dimensional Hubbard
model [38–41]. It is often treated explicitly in the large-U limit
via an approximate mapping of the Hubbard model onto the
t–J model, where J is the strength of the effective nonlocal
interaction. A major difference between the t–J model and
the AHM is that double occupation of orbitals is completely
suppressed in the former whereas a finite fraction of sites
are doubly occupied in the latter when W � U . A second
difference is that the effective interaction in the t–J model
is a spin–spin interaction with J ∼ t2/U , whereas the self-
energy correction derived here has the structure of an exchange
self-energy and is proportional to t . The apparent distinction
between the Hubbard model and AHM has been noted in [28],
where exact numerical calculations found a ZBA that is nearly
independent of U and linearly proportional to t (consistent
with (22)).

2.3. Coherent potential approximation

In this section, we describe an implementation of the
coherent potential approximation (CPA) that includes the
effects of interactions and disorder within an effective medium
approximation. As mentioned in the introduction, the CPA
neglects spatial correlations and therefore misses the physics
of the ZBA. It is therefore useful as a point of comparison for
our HMFT calculations.

5
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Our CPA implementation applies specifically to the
HFA and the HI approximation, and hence is denoted by
HFA + CPA or HI + CPA as appropriate, and reduces to these
approximations in the limit W → 0. The HFA + CPA and
HI + CPA algorithms also reduce to the usual CPA in the
noninteracting U → 0 limit. Because of the local nature of
these approximations, the nonlocal interaction V has not been
included.

For a particular lattice, we can calculate the local Green’s
function of the disorder-averaged system:

G loc(ω) = 1

N

∑

k

1

ω − εk − �(ω)
. (23)

In this equation, �(ω) is a self-energy that includes both
inelastic contributions from the local interaction and elastic
contributions from the disorder scattering. On the first iteration
of the algorithm, �(ω) is guessed, and on later iterations it
is taken from the output of the previous iterations. Next, we
define a Green’s function

Gε(ω) = [[G loc(ω)]−1 + �(ω) − ε − �ε(ω)]−1. (24)

This is the local Green’s function for a site with energy ε which
is embedded in the effective medium. The term �ε(ω) is the
inelastic self-energy for the site, and must be determined self-
consistently. For both the HFA and HI approximation, �ε(ω)

depends on the local charge density nε . Equation (24) can
therefore be closed by the relations

nε = − 2

π

∫ εF

−∞
Im Gε(ω) dω, (25)

and �ε(ω) = U nε

2 for the HFA or

�ε(ω) = U
nε

2
+ U 2 nε

2 (1 − nε

2 )

ω − ε − U(1 − nε

2 )
(26)

for the HI approximation. Equations (24)–(26) must be iterated
to convergence for each value of ε.

We then average Gε(ω) over site energies to get

Gav(ω) = 1

W

∫ W/2

−W/2
dε Gε(ω), (27)

and a new self-energy is found via

�new(ω) = [G loc(ω)]−1 + �(ω) − [Gav(ω)]−1. (28)

The iteration cycle is now restarted at (23) with �new(ω) taking
the place of �(ω). The iteration process is terminated when
the difference between �new(ω) and �(ω) is small. When the
iteration cycle is complete, G loc(ω) is the disorder-averaged
Green’s function of the interacting system.

3. Results

In this section, we present our numerical density of states
results and examine in particular how different pieces of the
self-energy (9a) and (9b) influence the ZBA. In section 3.1, we

show results for the case where the self-energy is purely local,
achieved by setting V = 0 in (9a) and (9b). An analytical
discussion of these results is presented in section 3.3. In
section 3.2, we begin by exploring the effects of including an
exchange contribution to the self-energy, achieved by setting
V nonzero in (9b). As shown in section 2.2, this corresponds
qualitatively to the large-disorder Anderson–Hubbard model
with V representing an effective nonlocal interaction generated
by U . Finally, we proceed to explore the effects of the
Hartree self-energy due to a nearest-neighbour interaction on
the density of states.

3.1. Numerical results, V = 0

We begin our discussion with the case V = 0. In
this case, the self-energy is purely local and therefore
cannot generate the negative ZBA found in exact numerical
calculations. This case is nonetheless interesting because
it provides a relatively simple illustration of the role of
strong correlations. Throughout this section, strong correlation
effects are identified by comparisons between the HFA (which
neglects correlations) and HMFT.

The DOS is calculated from the self-consistently
determined Green’s function via

ρ(ω) = − 1

Nπ

∑

i

Im Gii (ω) (29)

where the rank-N matrix G(ω) is given by (4). The evolution
of ρ(ω) with doping is shown for V = 0 in figure 2. We
have chosen W = 12t , which corresponds to W = 1.5D
where D = 8t is the bandwidth in the clean noninteracting
limit. Within HMFT, the AHM is Anderson-localized in two
dimensions for this value of W [27]. We have taken U = 8t ,
which is large relative to t , but is much less than the critical
Uc ≈ W at which the Mott transition takes place. For
comparison, we have shown results for HMFT and for the
HI + CPA described in section 2.3. These two theories employ
the same approximation for the interaction and differ only in
how they treat disorder: nonlocal spatial correlations between
impurity sites and the charge density are neglected in effective
medium approximations and are treated exactly in HMFT. The
two methods give quantitatively similar results, except for the
ZBA that emerges away from half-filling in HMFT but is
absent in HI + CPA.

We note that the sign of the ZBA in figure 2 is positive.
This is different from the usual case discussed in the literature,
but is consistent with AA theory, where a negative ZBA
comes from the exchange self-energy while the Hartree self-
energy makes a weak positive correction to the DOS. Since the
Hubbard interaction has a vanishing exchange self-energy, the
expectation from mean-field theory is for a positive ZBA when
V = 0. This is illustrated by the numerical HFA calculations
shown in figures 2(e)–(h).

Although the sign of the ZBA is the same in HMFT and
HFA calculations, its magnitude is different. In particular, the
peak at εF is finite at all doping levels in the HFA but is absent
near half-filling in the HMFT calculations. This difference

6
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Figure 2. Evolution of the DOS with doping for a 12 × 12 lattice with U = 8t , W = 12t , V = 0 and 1000–2000 impurity configurations.
(a)–(d) Black solid lines and red dashed lines represent the results of HMFT and effective medium calculations, respectively. The Lorentzian
broadening is γ = 0.025 throughout this work. (e)–(h) Corresponding plots for paramagnetic HFA calculations are shown for the same
parameters and 1000 impurity configurations.

Figure 3. Evolution of the DOS with U at quarter-filling for W = 12t , V = 0, and 8 × 8 lattices with 1000 impurity configurations. The
upper panels (a)–(d) show HMFT results while the lower panels (e)–(h) show HFA results.

shows that strong correlations suppress the ZBA near half-
filling. Results for quarter-filling are shown in figure 3 for a
range of U , where it can be seen that the ZBA grows with U
when U is small, but saturates when U � 8t . A more technical
discussion of these results is given in section 3.3, and we briefly
summarize the main ideas of this discussion here.

The main distinction between weakly and strongly
correlated systems is that the local charge density ni is
a continuous variable in weakly correlated systems, but is
restricted to near-integer values in strongly correlated systems.

In the HFA, the energy of an isolated site is ωi = εi + Uni/2.
For sites with εF − U < εi < εF, the self-consistent equation
for the charge density, ni = 2 f (ωi ) (where f (x) is the Fermi
function), will be satisfied at zero temperature by

ωi = εF, ni = 2(εF − εi)/U,

where the second equality comes from rearranging the
expression for ωi . Since a macroscopic fraction of sites
satisfy εF − U < εi < εF, a peak (i.e. a positive ZBA) is
expected in the DOS at the Fermi energy in the atomic limit.

7
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Figure 4. Contributions to the zero-bias anomaly for V = 2.4t at (a) half-filling and (b) quarter-filling. For the curve labelled ‘full’, both the
exchange and Hartree self-energy contributions from the nearest-neighbour interaction are retained, while for the curve labelled ‘exchange
only’, the Hartree self-energy is set to zero. The curves show that the ZBA at half-filling comes primarily from the Hartree contribution, and is
therefore of the Efros–Shklovskii type. At quarter-filling, the exchange self-energy is dominant and the ZBA is therefore
Altshuler–Aronov-like. The inset shows results for the localization length at half-filling reproduced from a finite-size scaling analysis in [27]
for V = 0. The short localization length at large U in HMFT calculations, relative to HF calculations, is consistent with the enhanced
Coulomb gap in the HMFT calculations.

Numerical calculations (not shown) find that the peak persists,
but weakens, as t/W grows.

In contrast, the poles in the spectral function for an
isolated strongly correlated site are at ωi = εi and ωi = εi +U .
Because of the rigidity of the relationship between ωi and εi ,
the distribution of ωi values follows the distribution of εi and
a vanishing fraction of sites therefore have resonances at εF.
There is, consequently, no ZBA when t = 0; the ZBA in
HMFT calculations only occurs when t/W is nonzero. The
discussion in section 3.3 shows that the spectral weight in
the ZBA is proportional to the hybridization function 	i (εF)

between sites with εi ≈ εF or εi + U ≈ εF and the rest of the
lattice. The absence of a ZBA at half-filling comes from the
fact that these sites decouple from the lattice, i.e. 	i (εF) = 0,
when εF = U/2.

Our analytical calculations in section 3.3 also suggest that
	i(εF) is a strong function of both εF and U provided εF lies
in the ‘central plateau’ (by which we mean the broad peak in
the DOS arising from the overlap of upper and lower Hubbard
bands; see, for example, figure 2(a)). Outside the central
plateau, 	i(εF) is a weak function of both εF and U . This is
qualitatively consistent with the numerical results in figure 3,
which show that the peak height increases with U for U � 8t
and saturates at larger U : in the limit t/W → 0, it is easy to
show that εF lies in the central plateau for U < W/2.

3.2. Numerical results, V �= 0

We now consider the case V �= 0. As for V = 0, the influence
of strong correlations is most visible at half-filling. For the
purposes of this discussion, the term ‘ES-like behaviour’ refers
to a negative Hartree contribution to the DOS, and the term
‘AA-like behaviour’ refers to a Hartree contribution which is
positive and an exchange contribution which is negative.

We begin, in figure 4, with a comparison of the effects
of the exchange and Hartree self-energies on the ZBA. We

argued in section 2.2, based on an examination of the leading-
order correction to the local HI self-energy, that an ‘exchange-
only’ treatment of the EAHM could provide a low-energy
effective model for the AHM. In such a treatment, only the
local self-energy (from U ) and nonlocal exchange self-energy
(from V ) are present, and V is thought of as an effective
interaction originating from U , which at half-filling is Veff ∼
2t (recall (22)). Figure 4 shows that, in the exchange-only
calculations, there is a narrow ZBA at εF. The ZBA is, by
definition, AA-like since it is due to the exchange self-energy.
Both the width and depth of the ZBA depend on V (not shown),
but both are approximately independent of doping (figures 4(a)
and (b)). These results are qualitatively consistent with [28],
which found (i) that the shape of the ZBA is roughly doping
independent, (ii) that the width scales linearly with t , and
(iii) that the shape of the ZBA is roughly independent of W
and U .

The HMFT ZBA is not consistent with unrestricted HFA
calculations for the AHM [14–18]. This is not surprising since
the physics of the ZBA is different in the two approximations:
in HMFT, the ZBA comes from a nonlocal effective interaction
generated by spin and charge fluctuations; in the HFA, the
ZBA is connected to the formation of static magnetic moments
generated by U [17]. One consequence of this difference is
that the ZBA is independent of U in HMFT (from (22)) and
grows monotonically with U in the HFA.

The residual DOS ρ(εF) is nonzero in our calculations, in
contrast to recent results of Shinaoka et al [18]. They have
shown that, in the unrestricted HFA, there is a soft gap which
extends over a narrow energy window |ω| � 0.01t . A similar
soft gap has been found in exact diagonalization calculations
in one dimension [18]. However, the widths of these gaps are
below the resolution of our calculations, and we are therefore
unable to determine whether HMFT predicts a similar soft gap
in two dimensions.

We now turn our attention to the Hartree contribution to
the self-energy. Figure 4 shows that, at half-filling, it has a

8
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Figure 5. Evolution of the DOS with V at half-filling for U = 8t and W = 12t . (a)–(d) HMFT results for an 8 × 8 lattice with 1000 impurity
configurations. (e)–(h) HFA results are for the same parameters and 10 × 10 lattices with 1000 impurity configurations.

pronounced effect on the DOS, indicating that the physics of
the ZBA in the EAHM is qualitatively different from that in the
AHM. The DOS at half-filling is shown in figure 5 for U = 8t
and increasing V . In both the HMFT and HFA results, ES-
like and AA-like behaviour are present. This is most evident in
figure 5(d) where the ZBA extends over −5t � ω � 5t and
shows a crossover between low- and high-energy behaviour
at |ω| ≈ 0.5t . That the gap in figure 5(d) is mostly ES-like,
except right near the origin, can be seen in figure 4(a) where
the full and exchange-only calculations are compared. (Note
that the DOS does not satisfy the ES result ρ(ω) ∝ |ω − εF|
because the interaction is short range.)

It was proposed in [42] that there should be a transition
between ES-like behaviour farther from the Fermi energy and
AA-like behaviour closer in whenever the interaction is finite-
ranged. This can be understood following the arguments of
ES [1]: in the atomic limit, the average distance between two
states near the Fermi energy increases as the difference in their
energy decreases. If this distance becomes greater than the
range of the interaction, the ES argument breaks down. In
our case, the interaction has a finite range, and hence the ES
behaviour is lost near the Fermi energy.

The most striking difference between the HMFT and
HFA results is the more pronounced ES-like behaviour in the
strongly correlated case. Strong correlations result in much
less screening of the disorder than in the mean-field treatment,
hence enhancing the disorder-driven ES-like behaviour. That
the (low-ω) AA-like behaviours in the HMFT and HFA results
differ in sign is not surprising given the very different treatment
of U in the two cases.

The results at quarter-filling are shown in figure 6. The
ZBA in the HMFT results is less pronounced at quarter-
filling than at half-filling. The narrow ZBA close to the
Fermi energy crosses over from positive to negative, consistent

with increasing V and hence increasing negative exchange
contribution of the AA type. As seen in figure 6(b), the Hartree
self-energy modifies the DOS over a large energy range, but
does not produce a gap-like feature at the Fermi energy. Exact
studies of small clusters, to be reported elsewhere [32], suggest
that the transition from large to small ZBA occurs when εF

is shifted outside the central plateau described earlier. In the
atomic limit, when εF lies within the central plateau ni may
have three distinct values (0, 1 or 2), whereas ni can only be
0 or 1 for εF below the lower edge of the plateau. In small
clusters, this reduction in the range of possible charge states
for individual sites directly results in a reduced ZBA. In marked
contrast to the strongly correlated results, the HFA results show
an AA-like peak and an ES-like dip, both of which grow with
increasing V .

Figure 7 shows the variation of the DOS with U for
V = 1.6t . For the somewhat artificial case of U = 0
shown in figures 6(a) and (e), the results differ slightly because
the numerical HFA and HMFT routines converge differently.
Both obtain charge order frustrated by the disorder, but with
slightly shifted domain walls. In the HFA case, increasing
U screens the disorder, reducing the ES-like behaviour. The
AA-like Hartree peak is initially strengthened by U but is
reduced as the screening increases. At large U (figure 7(h)),
the DOS approaches the clean-limit result. In the HMFT case,
the screening produced by U initially weakens the ES-like
behaviour. However, for larger values of U , the screening in
the strongly correlated case is much less than that in mean
field. The localization length based on a finite-size scaling
analysis (calculated for V = 0) is reproduced from a previous
work [27] in the inset of figure 4. While the localization length
grows monotonically with U in the HFA, in the HMFT it
reaches a maximum at U ≈ 4t and decreases with increasing
U thereafter. Similarly, the ES-like behaviour of the HMFT

9
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Figure 6. Evolution of the DOS with V at quarter-filling with W = 12t and U = 8t . Calculations are for an 8 × 8 site lattice with more than
1000 sample configurations for each parameter set. Results are shown for (a)–(d) LDFMT and (e)–(h) HFA.

Figure 7. Evolution of the DOS with U at half-filling with W = 12t and V = 1.6t . (a)–(d) HMFT and (e)–(h) HFA calculations are shown.
Calculations are for an 8 × 8 site lattice with more than 1000 sample configurations for each parameter set.

DOS is initially weakened, but is not lost as in the HFA and
saturates before the opening of the Mott gap.

3.3. Analysis of strong correlation effects on the zero-bias
anomaly

In this section, we discuss the origin of the ZBA in the V = 0
case. We begin with (4) for the Green’s function. In the
large-disorder limit, it is possible to treat the hopping matrix
element as a perturbation. When the matrix t is zero, G(ω)

decouples into a diagonal matrix describing an ensemble of

isolated atoms with Green’s functions

G0
ii (ω) = 1

ω − εi − �0
ii (ω)

, (30)

where the superscript zeros refer to the isolated atomic systems
and �0

ii (ω) is given exactly by (7). The atomic Green’s
function, G0

ii (ω), has poles at

ω0
i− = εi ; ω0

i+ = εi + U, (31)

10
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with spectral weights

Z 0
i− = 1 − ni

2
; Z 0

i+ = ni

2
. (32)

The total density of states is found by averaging the imaginary
part of G0

i i (ω) over εi in the interval −W/2 < εi < W/2.
Since the pole energies are linear functions of εi , the total
density of states is featureless at the Fermi energy.

Next, we use the fact that the diagonal matrix elements
of (4) can be written in the form

Gii (ω) = 1

ω − εi − 	i (ω) − �i (ω)
, (33)

where 	i (ω) is the hybridization function that describes the
coupling of site i to the rest of the lattice. It is

	i (ω) =
∑

jk

ti j tki G
(i)
jk (ω)

≈ t2
∑

j

G0
j j(ω) (34)

where ti j are the matrix elements of t between sites i and
j , G(i)

jk (ω) is the Green’s function for the lattice with site i
removed, and the second line is the expansion of the first to
O(t2). Equation (34) applies formally to the limit that the
localization length vanishes, but is qualitatively correct for
t � W . We note that 	i (ω) is a complex function of frequency
for metallic systems, but is real with a discrete spectrum of
simple poles for Anderson-localized systems as we have here.

Recalling (7), we solve for the poles of Gii (ω) to O(t2):

ωi− = εi +
(

1 − ni

2

)
	i (ωi−), (35a)

ωi+ = εi + U + ni

2
	i (ωi+), (35b)

where we have assumed 	i � U . In the approximation (34),
	i(ωi±) diverges when ωi± is degenerate with any ω j±
for nearest-neighbour site j . This is an artefact of the
approximation since any degeneracy between i and j is lifted
by hybridization of the orbitals. The poles of 	i (ω) must
therefore differ from ωi± by an energy � t , and we impose
a cutoff |	i (ωi±)| < t .

The spectral weights Zi± of the poles (35a) and (35b) are
reduced by O(t2) from Z 0

i± and the remaining spectral weight
appears at new poles resulting from hybridization of site i with
the rest of the lattice. These poles play a role in suppressing
the ZBA in the limit that the localization length becomes large,
but are of secondary importance when t � W as in the current
discussion.

Equations (35a) and (35b) contain the essential physics
of the ZBA, which we summarize here before we go into
the detailed calculations. In both equations, the local charge
susceptibility χi i = −∂ni/∂εi is nonzero because of the
hybridization function 	i (ω). The main idea is that, because
χii is nonzero, sites with energies εi that are sufficiently close
to εF (εF − U ) can adjust their filling ni such that ωi− = εF

(ωi+ = εF). The range of εi satisfying the criterion of
‘sufficiently close’ is set by 	i (εF), and the weight under the

ZBA peak is therefore also set by 	i(εF). The suppression
of the ZBA at half-filling then follows from the fact that the
disorder average of 	i(εF) is an antisymmetric function of εF.

We consider sites with energies εi such that ωi± = εF. The
expression for ωi± requires knowledge of the charge density ni ,
which is given by ni/2 = ∑

± Z 0
i± f (ωi±) + O(t2). For sites

with ωi± = εF, this reduces to [excepting terms of O(t2)]

ni

2
=

(
1 − ni

2

)
f (εF), (ni < 1) (36)

for ωi− = εF and

ni

2
=

(
1 − ni

2

)
+ ni

2
f (εF), (ni > 1) (37)

for ωi+ = εF. At zero temperature, 0 < f (εF) < 1 and these
equations are satisfied for a range of εi . Setting ωi− = εF

in (35a) and applying the restriction 0 < ni < 1, we generate
the limits εL < εF − εi < εU on εi , where

εL = min

(
	i(εF)

2
,	i (εF)

)
,

εU = max

(
	i(εF)

2
,	i (εF)

)
.

In this range (rearranging (35a))

1 − ni

2
= εF − εi

	i(εF)
, (38)

and the density of states at εF coming from sites with ωi− = εF

is therefore

δρ−(ω ≈ εF) = 1

W

∫ εF−εL

εF−εU

dεi Zi−δ(ω − εF)

= 3

8

|	(εF)|
W

δ(ω − εF) + O(t4). (39)

In this equation, |	(εF)| is an average over |	i(εF)|. An
identical result can be found for sites with resonance energies
ωi+ = εF, so that the total density of states near the Fermi
energy is

ρ(ω ≈ εF) = 3

4

|	(εF)|
W

δ(ω − εF). (40)

Equation (40) shows that the ZBA is a delta function at zero
temperature. At finite temperatures T , the ZBA is a peak of
width ∼ T . The spectral weight in the peak is proportional to
the hybridization function 	(εF), and we next show how this
depends on doping.

We consider a site i in a lattice with coordination number
Zc, whose nearest neighbours have randomly chosen site
energies. At half-filling (εF = U/2), the terms G0

j j(εF) in
the sum in (34) are positive or negative with equal probability,
and tend to cancel. As the filling is reduced, the probability
that G0

j j(εF) is negative (positive) becomes larger (smaller).
We make a rough calculation that illustrates this behaviour by
replacing the sum over site index j in (34) with an integral over
ε j . Thus

	i (εF) ≈ t2 Zc

W

∫ W/2

−W/2
dε

(
1 − nε/2

εF − ε
+ nε/2

εF − ε − U

)
,

11
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where nε is the charge density for sites with site energy ε.
Recalling our constraint |	i(εF)| � t , we introduce cutoffs
near the poles of the integrand. Noting that

nε =

⎧
⎪⎨

⎪⎩

2, ε < εF − U

1, εF − U < ε < εF

0, ε > εF

we get

	i (εF) ≈ t2 Zc

W
ln

( W
2 + εF − U

W
2 − εF

)
, (41a)

for U − W
2 < εF < W

2 and

	i(εF) ≈ t2 Zc

W

[
ln

( W
2 + εF

W
2 − εF

)
+ 1

2
ln

(
U − W

2 − εF

W
2 + εF

)

+ 1

2
ln

(
t

U

)]
(41b)

for − W
2 < εF < U − W

2 . The logarithmic divergences
in (41a) and (41b) are artificial and must be cut off whenever
any numerator or denominator has a magnitude smaller than
t . Equation (41a) applies when the Fermi level sits in the
central plateau, and shows that 	i (εF) is antisymmetric about
half-filling (i.e. εF = U/2), and grows linearly away from
half-filling. Outside of the central plateau, 	i (εF) is a weak
function of εF.

In order to compare with figure 3, we evaluate (41b) at
quarter-filling, which for small t corresponds to

εF ≈
⎧
⎨

⎩

U

2
− W

4
, U < W

2

0, U > W
2 .

Then (41b) gives

|	i (εF)| ≈ t2 Zc

W

⎡

⎣ln

⎛

⎝

√
( W

2 )2 − U 2

3
2 W − U

⎞

⎠ − 1

2
ln

(
U

t

)⎤

⎦ ,

(42a)
for U < W

2 , and

|	i(εF)| ≈ t2 Zc

2W

[
ln

(
2U − W

W

)
− ln

(
U

t

)]
, (42b)

for U > W
2 . In (42a), |	i(εF)| grows linearly with U for small

U (recall that there is a cutoff such that ln(U/t) → ln(t/t)
when U < t), and saturates at a finite value when U 	 W

2 .
Both these results, and the results at half-filling in (41a) are
qualitatively consistent with the numerical results shown in
figures 2 and 3.

4. Conclusions

We have studied the effects of strong correlations on the
disorder-induced zero-bias anomaly in the density of states
for disordered interacting systems in two dimensions. A
purely local self-energy fails to capture the true physics,
demonstrating the importance of nonlocal contributions to the
self-energy in this context. We have motivated analytically

and demonstrated numerically that including an exchange self-
energy generates a doping independent ZBA as seen in other
studies of the Anderson–Hubbard model. In the extended
Anderson–Hubbard model, strong correlations suppress
screening strengthening Efros–Shklovskii-like behaviour and
greatly enhancing the ZBA. Because strong correlations are
less important at quarter-filling than at half-filling, the zero-
bias anomaly in the extended Anderson–Hubbard model shows
strong doping dependence.
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